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Abstract-A model of heat transfer in porous ceramics in the presence of segregation-surface diffusion 
mechanism is proposed. The effective thermal conductivities of materials possessing a small amount of 
spherical or cylindrical pores are calculated, which are shown to generalize the Maxwell formula for 
conductivities ofcomposite materials. Nondimensional parameters are formulated which govern the relative 
influence of segregation and diffusion of impurities on the effective conductivity of porous materials. 
Estimates performed for Arrhenius and McLean surface isotherm formulas show that the segregation- 
diffusion mechanism satisfactorily describes abnormal temperature dependences of thermal conductivities 

of refractory oxides in vacuum. 

1. INTRODUCTION 

HEAT TRANSFER processes in high temperature cer- 
amics and refractory materials are governed by their 
thermophysical properties, primarily, thermal con- 
ductivity and thermal diffusivity. Dependences of 
these properties upon the gas pressure and tem- 
perature determine thermal regimes of various high- 
temperature aggregates, insulating layers, etc. Inves- 
tigation of gas pressure and temperature dependences 
of these properties in ceramic materials is an impor- 
tant problem, lying in the focus of numerous theor- 
etical and experimental studies [l-lo]. 

Primary scientific and engineering interest is con- 
centrated on measuring and predicting the effective 
thermal conductivity, kcr of various ceramic materials 
in the temperature range of 300-2000 K, and gas 
pressure ranging from 1 to 1O-5 atm. Behaviour of 
keR of ceramics in the above conditions depends upon 
the material’s chemical composition and its porous 
microstructure. 

Thermal conductivities of dense, sintered poly- 
crystalline metal oxides (A1203, MgO, Y,O,, BeO, 
etc.), possessing almost zero porosity, E decrease with 
increasing temperature in the range 20~1000°C. This 
behaviour, which is normally observed both at atmo- 
spheric air pressure and in vacuum, accords with the 
Eucken law [ 111, which was found experimentally and 
afterwards confirmed theoretically on the basis of 
classical solid state physics models [ 121. 

For most ceramics and insulating materials, where 
porosities may range from 10 to 90% and above, keff 
was evaluated using Maxwell type models [5, 13-161 
for the effective thermal conductivity of a composite 
material, possessing two phases: one, solid (crys- 
talline), with thermal conductivity k and another, 
porous (gaseous), with thermal conductivity kg. In 
particular, for low porosity the Maxwell formula 
yields 

kern/k = U-2’4”,)/(1 f’4’7.A 

where 

k-k 
Y’,=&L 

2k+k,’ 

Since the thermal conductivity of the solid phase, 
k(T), decreases with temperature according to the 
Euken law, the effective thermal conductivity for this 
composite material calculated from equations (1) and 
(2) also follows this temperature dependence. This 
trend is indeed observed for atmospheric pressure 

P-61. 
However, effective thermal conductivities of many 

porous materials significantly decrease with decreas- 
ing gas pressure. This phenomenon, which was most 
clearly observed for temperatures of about 4OO”C, is 
explained by the influence of thin gaps and pore 
chains, separating sintered granules of ceramic 
materials [lo]. In addition, thermal conductivities of 
several porous ceramics, measured in vacuum, were 
found to violate the Eucken law [2-61. In particular, 
for low air pressure k,, of A1,03, MgO, Y,03 were 
found to increase with temperature increasing from 
2O&lOOO”C, which contradicts the Eucken law, pre- 
dicting a decrease of thermal conductivity in this 
range. It is worth mentioning that for the above 
materials, k,,at T x 1000°C reaches the value, obtain- 
able from the Maxwell type models with k, approxi- 
mately equal to thermal conductivity of air at atmo- 
spheric pressure (about 0.05 W m- ’ Km ‘). 

The above abnormal temperature and pressure 
dependences of k,, pointed at the existence of 
additional heat transfer mechanisms governing the 
behaviour of k,, at low pressures and temperatures 
about 1000°C. It was attempted to explain this abnor- 
mal behaviour of keR by assuming that at high tem- 
peratures the pores no longer contain vacuum but, 
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NOMENCLATURE 

N pore radius K<. k’, nondimensional parameters detincd 

% constants appearing in equation ( I5b) in equations (19a,b) 
A nondimensional constant appearing in m coefficient equal to 2 or 1 for spherical 

equation (40) and cylindrical pore respectively 
h radius of pore boundary layer p,, Lcgendre polynomials 

b,! constants appearing in equation (16b) Y, 4 heat flux 

0,1 constants appearing in equation (I 5a) Q specific heat release of segregation 
c concentration of impurities in the bulk or process 

pore boundary region Q" heat-transfer rate 

C0 equilibrium concentration of impurities I. spherical coordinate 

C, concentration of impurities on the R universal gas constant 
surface r temperature 

C,, equilibrium concentration of impurities T,, equilibrium temperature. 
on the surface 

C” constant appearing in Arrhenius’ 

equation (37) Greek symbols 
d diameter of a cylindrical pore c/.(, 2, coefficients defined in equation (14) 

8, constants appearing in equation ( 16a) Tv, f,, coefficients defined in equations (18) 
D bulk diffusivity and (28) 

D, surface ditfusivity (3 thickness of the surface layer 
D* grain boundary diffusivity t; porosity (void fraction) 
e energy of occupation of distorted surface II spherical angular coordinate 

location by an impurity atom coefficient defined in equation (I 7) 
E occupation energy for undistorted lattice $ parameter, characterizing the influence 

sites of the pore phase conductivity on the 

.fi, constants appearing in equation (16a) effective conductivity of a porous 
G external temperature gradient material 
h height of a cylindrical pore r!, nondimensional parameter defined in 

.I\ impurities flux in the surface region equation (34). 
‘* 

J impurities flux in the pore boundary 
region 

J impurities mass stream Subscripts 
k solid phase thermal conductivity 0 equilibrium 
k cm effective thermal conductivity of a cff effective properly 

composite material g gas 

k, gas thermal conductivity P pore 

k, thermal conductivity of the pore phase s surface. 
k P\ component of the pore phase 

conductivity due to segregation- Superscripts 
diffusion mechanism * pore boundary region. 

rather, gas, emitted within ceramic materials. 

However, further experiments (performed at lower 
pressures) and estimates showed [6-lo] that the gas 
emission is insignificant (especially for long measure- 
ment times in vacuum) and cannot explain the viol- 
ation of the Eucken law, observed for porous ceramic 
materials. 

It was found [7-IO], that the above abnormal 
behaviour of ker may be attributed to the influence of 
very small amounts of impurities or crystal lattice 
defects normally present in all ceramic materials. 
These species tend to concentrate (segregate) and 
diffuse along the surfaces of small pores existing in 
the region of contact between the crystalline grains 

(grain boundary region). composing ceramic 
materials [I 3, 171. These processes, occurring under 
the effect of temperature gradients, are accompanied 
by heat transfer across the pore. in addition to the 
conductive heat flux through the solid phase, which 
has already been accounted for in the Eucken law. 

Qualitative estimates of the influence of the seg- 
regation--surface diffusion mechanism on the effective 
thermal conductivity of ceramic materials [7. 81 were 
performed for an overly simplistic physical model. 
completely disregarding bulk diffusion of the seg- 
regated substance and the coupling existing between 
the heat and mass transfer processes in the vicinity of 
the pore surface. 
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This paper is aimed at developing a quantitative 
physico-mathematical model of heat transfer pro- 
cesses within porous ceramic materials, occurring in 
the presence of segregation-surface diffusion of 
impurities. The specific goal of this study is the inves- 
tigation of the effect of this process on the effective 
thermal conductivity of porous materials. Our rig- 
orous analyses are based on the classical Maxwell 
calculations of electric (thermal) conductivities of 
composite materials, which models are generalized to 
include the segregation-surface diffusion mechanism. 
On the basis of the fundamental treatment proposed 
here, the adhoc model developed in ref. [7] is reviewed 
and its basic assumptions are scrutinized and revised. 

2. SEGREGATION-SURFACE DIFFUSION 

MECHANISM OF HEAT TRANSFER IN 

POROUS MATERIALS 

The solid phase of porous ceramics usually contains 
various kinds of impurities, which can be substances 
of different chemical composition. Alternatively, in 
pure crystalline materials, such impurities may be 
defects of the lattice structure [13, 171. Every pore 
is surrounded by a thin surface layer possessing a 
distorted lattice structure [13] (see Fig. 1). In this 
layer the energy, e, of occupation of distorted surface 
locations by an impurity atom is less than the com- 
parable occupation energy, E for undistorted lattice 
sites, far from the surface. The difference, E-e 
between the occupation energies leads to the segrega- 
tion of the impurities in the surface layer, where the 
volumetric concentration C, is much larger than the 

desegregation of impurities 
accompanied by heat 
absorbtion 

release 
FIG. 1. Heat conduction, segregation, bulk and surface 

diffusion processes within porous ceramic materials. 

comparable concentration C, prevailing in the bulk 
[17, 181. 

Migration of the impurity atoms in the surface layer 
is characterized by lower activation energy, compared 
with that prevailing within the undistorted crystal lat- 
tice. Therefore, motion of impurities in the surface 
layer occurs by almost free passing from one distorted 
site to another. This is fundamentally different from 
the comparable motion in the bulk phase, where the 
impurities’ atoms move by squeezing between the sur- 
rounding atoms of the crystal lattice. Therefore, the 
impurities’ surface atomic mobility is greater than its 
mobility in the bulk and, hence, the surface diffusivity, 
D, is greater than the bulk diffusivity, D. Experimental 
data show that in sintered polycrystalline ceramics D, 
exceeds D by the factor of order lo6 and more [13, 
191. 

In the absence of temperature gradients any ceramic 
material possessing temperature T, is characterized 
by the corresponding equilibrium values Cso, Co of the 
surface and the bulk species concentrations, related 
by the surface isotherm 

C,, = f(C0, TO)’ (3) 

In the equilibrium state there are no mass or heat 
fluxes within the material. 

Consider now a steady-state heat and mass transfer 
process, resulting from an external macroscopic tem- 
perature gradient, imposed on the material. Since the 
temperature along the pore surface is not uniform, 
the equilibrium homogeneous distribution (3) of the 
surface species concentration and the bulk con- 
centration is now distorted. We will assume that the 
equilibrium, described by equation (3), prevails 
locally, in each point of the pore surface, namely, 

C, =f(C, 0 (4) 

Since C, normally decreases with increasing T, the 
‘cooler’ site of the pore surface will possess higher 
surface concentration than that prevailing on the 
‘hotter’ site. The resulting nonuniform surface con- 
centration distribution causes diffusive flux from the 
cooler site to the hotter site of the pore surface. This 
is accompanied by the concomitant segregation pro- 
cess ; namely the impurities are segregated from the 
pore boundary region onto the cooler pores’ sites, and 
dissolved (desegregated) from the hotter pores’ sites. 
The above segregation-desegregation processes are 
accompanied by diffusion of impurities in the bulk 
and the pore boundary region, as well as by heat 
release on the cooler sites and absorption on the hotter 
sites. The temperature field around the pore is thus 
distorted due to the heat release and absorption, 
resulting thereby in an additional heat flux across the 
pore, compared with conductive flux prevailing in 
the absence of segregation-diffusion mechanism. This 
extra heat flux is responsible for the concomitant 
increase of the effective thermal conductivity, kerr, of 
the porous ceramic material. 
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The temperature fields inside and outside the pore 
arc described by the Laplace equation : 

V’T = 0. (5) 

The volumetric concentrations in the bulk and the 
grain boundary regions are also governed by the 
Laplace equation : 

v’c‘ = 0. (6) 

Assuming that the mass transfer in the thin layer 6 
occurs along the pore surface, and the impurities do 
not penetrate into the gas within the pore, one can 
write the equation of the impurities mass conservation 
at the surface in the form 

SD,V,‘C, = -Dn*VC ontheporesurface, (7) 

where 0, is the surface gradient operator and n is the 
vector unit normal to the surface and directed inside 
the bulk phase. 

The following boundary condition relates the heat 
and mass fluxes on the pore surface : 

kn * W’L,,,, -k,n* (VT),,, 

= -QDn.VC on the pore surface, (8) 

where Q is the specific heat release of the segregation 
process. This equation describes balance between the 
conductive heat fluxes in the gas and the solid phase, 
and the heat released (absorbed) due to the seg- 
regation (desegregation) processes. 

Equations (4)-(8) constitute a general model of the 
heat and mass transfer processes occurring in two- 
phase (or even multiphase) materials in the presence 
of segregationdiffusion processes. This model com- 
bined with the knowledge of the geometric pore micro- 
structure and material’s chemical composition may be 
used to study the influence of the latter processes on 
the (coarse-scale) thermal conductivity of a composite 
ceramic material and the effective diffusivity of 
impurities in it. 

Calculation of heat transfer in porous ceramic 
materials, possessing complicated grain boundary 
structure, lies beyond the scope of the present study. 
Here we will investigate the role of the segregation-- 
surface diffusion processes on the basis of the simple 
Maxwell-type model for thermal conductivity of a 
solid material, possessing a small amount of spherical 

pores. As will be shown in the following sections, in 
this case the above equations (4)-(S) may bc rig- 
orously solved. 

We will be specifically interested in the heat and 
mass transfer processes occurring in the region separ- 
ating two partially sintered granules (grain boundary 
region). The solid structure in this region differs sig- 
nificantly from that prevailing at large distances from 
the pore boundary [13, 191. The grain boundary is 
characterized by a less dense packing of atoms within 
the lattice, which results in greater atomic mobility 
and a lower activation energy for diffusion, than the 
comparable quantities prevailing within the undis- 

torted lattice structure [13]. It is estimated that the 
diffusivity of impurities D* in the grain boundary 
region possesses a somewhat intermediate value 
between the bulk and the surface diffusivities. i.e. 
D < D* i: D,. 

3. PHYSICO-MATHEMATICAL MODEL 

Ceramic material will be viewed as a solid with 

thermal conductivity k, containing uniformly dis- 
tributed spherical pores characterized by a low volu- 
metric concentration E (see Fig. 2). The pores are tilled 
with a neutral gas possessing thermal conductivity k,. 
In order to estimate the contribution of segregation- 
surface diffusion processes to the heat transfer, math- 
cmatical analysis will be performed for a single pore 
(Fig. 1) within an effectively infinite solid material. 
embodied in a temperature field, characterized by uni- 
Form gradient G = dT/dx at infinity. 

The different mass transfer properties prevailing 
near a pore within a ceramic material are appro- 
priatcly reflected in the three-layer heat and mass 

transfer model: surface layer. of small thickness. 
ci x u. pore boundary layer, u c r < h. possessing the 
properties of grain boundary region, and the bulk 
region, I’ > h (see Fig. 2). 

Equations (5)-(g) may be rewritten in the spherical 
coordinate system (Fig. 3). In the spherical coordinate 
system equation (7) adopts the form : 

Far from the pore surface both the temperature and 
the concentration fields are undisturbed, i.c. 

T-t T,,+GrcosO. C‘- C’,,. I’--+ 7.. (101 

The boundary condition (8) in the chosen system 
is : 

FIG. 2. Physico-mathematical model. 
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where P, (cos 0) are the Legendre polynomials, a,, b,, 
c,, d, and f, are unknown constants. 

t 
Q 

Equations (9) (12) can be satisfied for arbitrary 0 
if a, = b = 1 - - c,, - d, -fn - 0 for n > 1, a, = b, = f. 

dx = 0, ’ 

and 

\ 

solid pnase 
a, = I, {(Kc+ I)(1 -kg/k)-2K, 

+v[W- 1X1 -k,lk)+%l), 
pore boundary 
region 

FIG. 3. Transport of impurities in the vicinity of a pore, 
induced by an externally applied temperature gradient. 

b, = -9r,K,D*/(D*+20), 

c, = 3I,[Kc+l+v(2Kc-l)], 

kg 
ar r=o+O 

d, = -6l-,vK,, f, = -3r,K,, 

. (11) where 
,=a- 0 

Additional boundary conditions require continuity v = (t~/b)~(D*-D)/(D*+2D), (17) 

of temperature at the pore surface and continuity 
of the volumetric concentration and the mass fluxes 

I-, = {(Kc+ 1)(2+kg/k)+2K, 

across the pore boundary surface : +v[(2K,-1)(2+k,/k)-2K,]}-‘, (18) 

TI,=,-o = TI,=,+o, (12a) with the nondimensional parameters 

Clr=h-” = Cl,=h+O, D*; r=b~ = D; r=h+O’ 
0 

Wb,c) 

The problem posed by equations (5) (6), (9)-(12) 
should be solved jointly with the equilibrium isotherm 
equation (4). In order to simplify the solution we will 
linearize the functional dependence (4) in the fol- 
lowing form : 

C, = C,,+-a,(T--T,)+a,(C-CC,), (13) 

where the coefficients 

are evaluated at the equilibrium values Co, To. 

4. SOLUTION 

Kc=s$,, T K = -Ff. (19a,b) 

Parameters KT, Kc characterize the relative influ- 
ence of segregation-diffusion processes on the heat 
transfer in porous materials and will be discussed in 
the following section. 

The final solution of the problem is obtained by 
substitution of the above coefficients into (15a, b), 
(16a, b) : 

T(r, 0) = To+3GT,[Kc+ 1 +v(2K,- l)]rcosQ, 

0 < r ,< a, (20) 

T(r,@ = 7,+Grcosn+Cr.{(K,+I)(~-2) 

--2K,+v[(&- l)( 1- 2)+2KT]} 
The solution of equations (S), (6) is 

(21) 

T = Ga f cn$ P, (COSO), r < a, (154 
t7=0 c,(e) = C,+3Gc(,r,(l -v)acos8, (22) 

T= T,+Grcose+Ga f a,$P,,(cos0), 
PI=0 

C(r,0) = Co-3G~rVKc 

r > a, (15b) a < r < b, (23) 

C=Ga; go dn$+f;,$ P,(cos@, 
n > 

D* 
C(r,@ = C,-9G~T,K,---- 

3 

cosoa 
D*+2D r2’ 

a < r < 6, (16a) r>b. (24) 



312x T. GAMBAKYAN cv ul. 

The impurities flux calculated for typical (for small 
pores) values of parameters h/a = 2 and D,/D* = 100 
[I 3,161 from solutions (23). (24) are exhibited in Fig. 

3. One can see that the mass vector flux lines are 
closed, i.e. start from and terminate on the port 

surface. In that sense the segregation--diffusion mech- 

anism is analogous to mass transfer processes occur- 
ring in heat pipes [20]. It is important to note that for 
the above choice of parameters LI. h. D,:‘D* the major 
portion of the mass stream (98%) is transferred in the 

pore boundary layer. This means that for the values 
of parameters specified above, the temperature and 
volumetric concentration fields reach their asymptotic 
values (prevailing Far from the pore) within the pore 

boundary region and the comparable processes in the 
bulk may be disregarded. The solution for the cnn- 
centration distribution in this case may be obtained 

from (23) upon setting Y = 0 and extending h + Y,. 

Indeed. it can bc easily shown that for small ports 
(20 < I pm) and the values of parameters specified 
above, \’ cc I Therefore, we can set \’ = 0 in (20) 
(24). 

For Y = 0 the temperature distribution in the 
material and the concentrations of impurities in the 
pore surface and bulk regions, adopt the forms 

x [(,,,,,~l-~j-2K,lcusU~~. ,‘>(I, 

(35) 

C,(B) = C‘,,,+3Gcc,T,,~tcos0, (26) 

C(r,O) = C,I-3G~‘T,1x;.cos(io:. r > 0. (27) 
< I-- 

where 

To = [(&+I) (,t 2, +2K,] ‘. (28) 

5. EFFECTIVE THERMAL CONDUCTIVITY 

The effective thermal conductivity tensor of a com- 

posite material is defined as 

‘I = -ken-VT, (29) 

where q is a heat flux, V7’is a temperature gradient. 
Upon setting K, = 0 (in the absence of segregation 

process), expressions (20) and (25) reduce to 
Maxwell’s [14] solution for the temperature dis- 
tribution within the material of thermal conductivity 
k, possessing spherical inclusions with radius u and 

thermal conductivity k, : 

k-k 
T(r,O) = T,~+GrcosO+G ~ “cosd. 

2k+k, Y- 
r > N. 

(30) 

Solution (30) can be brought to the form (25) by 
means of replacing k, by k, given by 

(3 I ) 

The above introduced quantity k, will be intcr- 
preted as the thermal conductivity of the port phase. 

This quantity serves as an important element in vari- 
OLIS models for the effective thermal conductivity of 

porous and composite materials [IO. 15, 161. 
Following Maxwell’s treatment we can USC (30). 

(31) to calculate the effective scalar thermal con- 
ductivity of porous material, /+: in the presence 01 
segregation-surface diffusion processes (cf. ( I )) : 

k,,,;k = (I -X’)‘(l +‘+‘). (37) 

In the above 

1-k ,‘k ylEE ~_P, 
2+k,:k 

is a parameter characterizing the intluence of the port 
phase conductivity on the effective thermal con- 
ductivity of porous material. 

In the absence of segregation process (K, = 0) 
expressions (32), (33) clearly reduce to the Maxwell 
formulas (I), (2). 

To understand the influence of the segregation 
diffusion processes on the heat transfer, consider non- 
dimensional parameters Kc. K?. defined in (19a.b). 
Using definitions (14) of the coefficients X( . c1[, sup- 
posing that a characteristic tcmpcraturc drop AT (say, 
equal to Gu) across the pore results in the concomitant 
drops AC and AC, of the impurities’ concentrations 
in the bulk and the surface layer regions, one can 
write : 

where y ( =kGo) is the heat flux, and ,j,. j* are 
the respective impurities concentration fluxes in the 
surface and the pore boundary regions. resulting from 
the temperature gradient G. As such. parameter K, 
determines the mass transfer rate in the surface layer 
with respect to the comparable mass transfer in the 
port boundary region. Therefore. this parameter 
characterizes the limiting role of the bulk diKusion in 
the process of impurities’ transfer into the surface 
layer. On the other hand, KT governs the effect of heat 
transfer rate induced by the segregation-diffusion 
mechanism with respect to the conductive heat trans- 
fer in the pore boundary region. 

The competitive influences of the above parameters 
may be elucidated by considering the effects of par- 
ameters Kc, KI- on the dimensionless thermal con- 
ductivity kc,,-/k of a porous material, given by (32). 
(33). The above ratio depends upon the porosity i: and 
the physico-chemical and thermal material’s prop- 
erties via parameter ‘4’. In particular, in the cases 
where k,, < k (Y > 0). or k, > k (‘V < 0). one rcspcc- 
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tively obtains that keR < k (ketf > k). In the absence 

of segregation-diffusion mechanism (KT = 0, k, = k,) 

effective thermal conductivities of all ceramic 

materials are usually less than the conductivity k of 
their solid phase, since normally k, < k. However, for 
an intensive segregation process (large KT), the pore 
phase conductivity, k, may exceed k even in the case 
of evacuated pores (k, = 0). In particular, when 
KT >> (Kc+ 1)/2, corresponding to the situation, 
where the segregation-diffusion mechanism domi- 
nates over the conductive heat transfer, equations 
(32), (33) yield the effective thermal conductivity of a 
material possessing inclusions with infinite con- 
ductivity : keR = k( 1 + 2e)/( 1 -a). 

The increasing intensity of the segregation- 

diffusion processes (increasing KT) leads to increase 
of the effective thermal conductivity. However, this 

effect is controlled by the grain boundary diffusion 
rate, characterized by Kc. Namely, decrease of pore 
boundary diffusion rate (increase of Kc) leads to the 
diminution of the influence of the segregation mech- 

anism on k,,. 
The relative influence of the segregation-diffusion 

heat transfer mechanism with respect to heat con- 
duction in the gas is thus governed by the non- 
dimensional parameter, elucidated from (3 1) : 

k 2K, 

W=k,Kc+l’ 
(34) 

Namely, the inequalities w >> 1, w << 1 respectively 

describe the situations, where the segregation- 

diffusion mechanism dominates over the gas con- 
duction (as in the case of low gas pressures) or is 
insignificant (e.g. for atmospheric gas pressure). 
Qualitative estimates of the relative influence of the 
above two heat transfer mechanisms for various tem- 

peratures are performed in the following section. 
In the two-dimensional case where the pore may be 

approximated by an infinite circular cylinder, similar 

calculations yield kef = (1 - Y)/( 1 +‘I-‘), where 

y = y%lk 
1 +k,lk’ 

(35) 

and the pore phase conductivity for cylindrical 

geometry is 

k, = s+k,. (36) 

It must be pointed out, that there exist more elab- 
orate models for calculation of the effective properties 
of composite materials [5, 15-17, 21, 221 which are 
applicable to all values of material porosities. Our 
small E analysis may be generalized to materials pos- 
sessing a very general spatially periodic structure by 
application of the theory of macrotransport processes 

]231. 

6. DISCUSSION 

In this section we will estimate the influence of 
various parameters on the value of thermal con- 

ductivity k, of the pore phase given by equation (31). 

Towards this goal consider several models describing 

equilibrium concentration of the segregated sub- 

stance. 
The general Arrhenius’ formula for surface con- 

centration of impurities [ 131 yields 

C, = Co exp (Q/RT), (37) 

where R is the universal gas constant and Co = const. 
Using this equation, together with equations (14), 

(19a,b) and (31) the following expression for the pore 
thermal conductivity is obtained : 

k, = 
mDsQIGo 6 

RT2 
0 

a +k,, 

with m = 2, 1 for spherical and cylindrical pore respec- 
tively. 

This result may be obtained by the following simple 
considerations [7]. Assume that the pore may be 
viewed as a circular cylinder possessing height h and 
base diameter d, with axis parallel to the direction of 
external temperature gradient and temperatures To, 

To + AT, prevailing at the lower and the upper bases, 
respectively. The impurities’ mass transfer rate along 
the lateral surface of the cylinder is 

J=  D 

s 

WO)-G(TO+AT)~~~ 
h 

Expanding C,(T) - C,( T+ AT) in Taylor series and 

using (37), one obtains 

J= 
DsQCs &cd D,QC” 67cd 

RT,2k=xheXP (39) 

The heat-transfer rate across the pore may be ex- 
pressed in the form : 

~=JQ+k,$AT=~~AT+kg$AT, 
0 

The pore conductivity, defined in terms of the above 

total heat transfer rate and the temperature gradient 
AT/h across the lateral cylinder surface, is : 

k =cfifk J%Q2G46+k ___- 
’ ATnd= g RT2 d ” 

which coincides with (38). 
As one can see from equation (39) the amount of 

impurities transferred across the pore per unit time 
does not depend on their volumetric concentration in 
the vicinity of the pore surface. Therefore equation 

(38) implies that there is an endless source of seg- 
regated substance on the pore surface, maintaining a 
steady stream of impurities (39). 

Moreover, since the Arrhenius’ formula does not 
take into account the relationship between the bulk 
and surface concentration of the segregated sub- 
stance, expression (38) derived on its basis, com- 
pletely disregards the limiting role of the volumetric dif- 
fusion rate in the segregationdiffusion heat transfer 
mechanism. 
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Kingery [ 13, 171, following McLean [IX], suggested 
another expression relating equilibrium bulk and sur- 
face concentrations of impurities in ceramics : 

c, = (40) 

where A is a nondimensional constant. which is 

approximately equal to unity [17], 0 is the density of 
the solid phase. This expression allows us to account 
for the influence of the bulk diffusion on the pore 

phase conductivity. Expression (40). jointly with 
equations (14), (19a,b) and (31). lead to the following 
formula for k, : 

k 

P 

+I\, = k,,+k,. (41) 

Comparing k, calculated for typical values of par- 

ameters, one can show that formulas (39) and (41) 
yield close values of the pore phase conductivity for 
temperatures of about IOOO”C, in which case almost 

all segregated substance is dissolved in the bulk phase. 
However, for moderate temperatures (about 400 C), 
the Arrhenius formula yields significantly higher 
values of k, than the expression (41) obtained using 
Kingery-McLean relationship (40). This disparity is 
clearly explained by the ‘endless impurity source’ 
approximation, implicitly used in the Arrhenius for- 
mula. 

Expression (41) will be further used to delineate the 
temperature range for which the influence of the seg- 
regation-diffusion mechanism is comparable to that 
of the heat conductive transport through the gas, 
expressed by the value k, in equation (41). Towards 
this aim compare the latter quantity with the first 
term. k,, appearing in the right hand side of (41). 

The results of calculations of k,, in accordance with 
expression (41) arc exhibited on Fig. 4. The following 

1 
- Q = 75 kJ/mol 

1O-2 - 

1o-4 - 

1o-6 - 

lo+? 1 1 
0 500 1000 1500 

Temperature T, “C 

FIG. 4. Dependence of the pore phase conductivity of Y,O, 
in vacuum on temperature for several values of the specific 
heat release, associated with segregation of oxygen vacancies 

in crystal lattice. 

data were used : the energy of segregation Q = 25 75 
kJ molt ’ [I 71; the temperature dependence for the 
surface diffusion coefficient : D, = D,,, exp ( -E/R T,,). 
with II,,, = 0.0606 rn’ s ‘_ E = Xl.9 kJ mol ‘. as 
for difl’usion of oxygen vacancies in Y,O, [7]: 
(hD,)/(aD*) = O(l), in accordance with results 01‘ 
grain boundaries investigations and typical rclation- 
ships between surface and grain boundary diffusion 
coefficients in refractory oxides [ 13. 171. 

One can see that the effect of segregation -diffusion 

mechanism upon the thermal conductivity of Y,O, is 
manifested in growth of the port thermal conductivit\. 

X,, from about IO ’ to 5 x IO ’ W ITI ’ K ’ in the 
range of temperatures from 400 to 1200 c’. The lowr 

limit accords with the values of thermal conductivity 
of rarcficd gases. The upper limit is comparable with 
the thermal conductivity, h-, of the air at the atmo- 
spheric prcssurc [ 161. As such, one can conclude 1ha1 
for atmospheric pressure and moderate temperatures 

k,,, cc k,. whereas for higher temperatures (about 
1200 C) these quantities arc of the same order 01‘ 
magnitudes. 

The results shown in Fig. 4 explain the growth ot 

the effcctivc thermal conductivity of Y-0; in vacuum 
in the range 400- 1200 C. experimentally measured [6] 
on high purity samples sintered in vacuum at 2000 <‘. 
This procedure insures the absence (within the abolc- 
mentioned Lcmperaturc range) 01’ coinpctiuvc heal 
transfer mechanisms [5. 9. lo], such AS gas emission 
or alteration of the porous structure of the material 
during the healing. The measured temperature behac- 
iour of ki.(, was shown to be attributable to increase 
of k,, from IO ’ W m ’ K ’ at 400 C to 5 x IO ’ W 
m ’ K ’ at I200 C. which is clearly confirmed by Fig. 
4. 

The heat and mass transfer in porous ccrumic 
materials in the presence of segregation-~diffusion pro- 
cesses possess an important feature. which is the 
closed form of the mass flux lint, induced by the 

macroscopically homogeneous temperature gradient. 
This means that a piece of ceramic material transmits 
zero IVY I~IXSS across its external facts. This heat-pipe 
like property clearly rectifies the unncccsaary assump- 
tion about the endless ‘external’ source of itnpuritics. 
made in rcfs. [7. X]. This property tnaq bc shown 10 
be reciprocal with respect to the transport 01‘ heat 
and impurities: that is, a macroscopic gradient of 
volumetric concentration. (‘. applied to an i.sofl7rr~twl 

porous material will induce heat transfer processes in 
which the heat flux lines start and tcrminatc on the 
pore surfaces. However, the net heat flux transfcrrcd 

through the material will be icro. 

7. CONCLUSIONS 

I. Heat and mass transfer processes occurring 
within porous ceramic materials in the presence 01 
segregation-diffusion proccsscs arc described by the 
generic physico---mathematical model. It is shown that 
an external temperature gradient applied to a ceramic 
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material induces circulation of impurities along closed 
lines in the vicinity of pores. 

2. The Maxwell formula for the effective thermal 
conductivity of continuous materials with disperse 
spherical (or cylindrical) pores is generalized to 
include the effect of segregation-volumetric surface 
diffusion mechanism for an arbitrary segregation iso- 
therm, linearized in the vicinity of the equilibrium 
state. The limiting role of volumetric diffusion on the 
effective thermal conductivity is quantified in terms of 
the pertinent nondimensional parameters. 

3. The general expression for the effective thermal 
conductivity is used to calculate the pore phase con- 
ductivity, k,, which quantity is used for interpretation 
of the experimental data. In a particular case of the 
Arrhenius segregation isotherm the expression for k, 

reduces to the formula previously obtained in sim- 
plistic analysis [7, 81. The expression for k,, obtained 
on the basis of the Kingery-McLean segregation iso- 
therm, establishes the relative influence of the seg- 
regation-diffusion heat transfer mechanism with 
respect to the conductive heat transfer through the 
gas in pores. 

4. The physicomathematical model developed in 
the present paper allows us to explain the violation of 
the Eucken law in vacuum, exhibited by refractory 
metal oxides ; namely, the growth of the function 
k,,(T) in the temperature range 500-1000°C and 
above. 
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